过程工程所发现富锰基NASICON型钠离子电池正极材料电压滞后原因
钠离子电池中的富锰基钠超离子导体(NASICON)型正极材料,因电压高、原材料丰富具有潜在的应用前景。但因充电/放电曲线存在明显的电压滞后,导致可逆容量较低,从而阻碍了其应用。过程工程所研究员赵君梅联合物理所研究员胡勇胜,从晶体结构上解释了富锰基NASICON型正极的电压滞后原因,并探索出克服这一现象的实用策略。相关研究成果于7月13日发表在Nature Energy(DOI:10.1038/s41560-023-01301-z)。
正极材料不仅决定着电池的能量密度,也决定其成本。Na3MnZr(PO4)3、Na3MnTi(PO4)3等富锰基NASICON型正极材料引起了人们对先进聚阴离子正极材料的广泛关注。但受制于动力学,锰基NASICON正极扩散在可利用电化学窗口显示出有限的电化学活性,其本质原因也尚未知晓。
研究人员基于充放电行为的差异,定义了聚阴离子材料存在的两类缺陷(图1),即在材料制备过程中产生的本征反占位缺陷(IASD)和伴随充放电过程产生的衍生反占位缺陷(DASD)。结合光谱、结构表征和理论计算,在所合成的Na3MnTi(PO4)3正极材料中捕捉到了Mn占据Na2(Wyckoff位置为18e)空位(Mn/Na2_v)的IASD,这完全不同于Na3VCr(PO4)3正极展现出的DASD现象。基于此,揭示了Na3MnTi(PO4)3电压滞后的本质起因:Mn/Na2_v的IASD阻断了Na+离子扩散通道,导致了Mn2+/3+/4+氧化还原反应时Na离子的扩散动力学缓慢,因此在可使用的电化学窗口范围内出现了电压极化和容量损失。
随后,研究团队探索出克服这种电压滞后现象的实用策略。通过在过渡金属位点掺杂Mo来增加IASD的形成能,从而降低Mn占据Na2空位,即减少缺陷浓度(图2)。最终,Mo掺杂Na3MnTi(PO4)3的可逆比容量在0.1C下从82.1 mAh·g-1增加到了103.7 mAh·g-1,并且在0.5C下循环600次后仍能保留初始容量的78.7%(在2.5-4.2 V的电压范围内)。
此前,赵君梅与胡勇胜,以及四川大学教授郭孝东合作,发现基于电荷自平衡,可通过调节Na3MnTi(PO4)3中钛的价态从而引入更多的钠,由此形成系列富钠Na3+xMnTi(IV)1-xTi(III)x(PO4)3 (0<x<1)材料。由于过量引入钠,减少晶体结构中的占位缺陷,在一定程度上也有效抑制了这一材料的电压滞后现象,使得充放电曲线展示了延长的Mn2+/Mn3+和Mn3+/Mn4+电压平台,为解决锰基NASICON正极存在的晶体结构缺陷提供了另一种解决思路(Advanced Functional Materials,DOI:10.1002/adfm.202302810)。
该系列研究对于更广泛地理解NASICON型正极的衰减机制具有重要意义,为开发低成本和高能量密度的钠电池正极材料提供了有效途径,也将推进锰基NASICON型正极的实际应用。
图1 衍生反位点缺陷和本征反位点缺陷之间的差异
图2 Na3MnTi(PO4)3的电压迟滞现象及Mo掺杂前后的原子分辨率HADDF-STEM图像
物理所博士生刘渊和特聘研究员容晓晖为本文第一作者。物理所研究员胡勇胜和过程工程所研究员赵君梅为通讯作者。
论文链接:https://www.nature.com/articles/s41560-023-01301-z
(绿色化工研究部)