生化装备研究部

生化装备研究部

  2021年度生化工程与装备研究部在基础和应用研究方面均有重要进展,发表SCI论文27篇,获得中国发明专利15项,申请中国发明专利8项。承担国家重点研发计划、省重大专项、国家自然科学基金等项目30余项。

  重点进展一:利用氧化石墨烯纳滤膜验证了“缺陷信号放大-靶向表面改性”的概念,发现靶向改性可以缩小膜孔径分布,提高膜分离选择性和抗污染性;基于此概念,利用商品化聚酰胺纳滤膜大孔附近羧基较多的特征,选择性活化羧基接枝氨基聚合物实现靶向表面改性,缩小孔径分布调控表面电荷,单糖/单盐分离选择性提高2.5倍,而通量仅下降4.7%,且耐碱洗溶胀能力显著增强(Chem. Eng. J. 2021, 411, 128587J. Membr. Sci. 2021, 628ZL202010948108.9

   

  

  图1靶向表面改性技术提高聚酰胺纳滤膜分离选择性

  Figure 2 Targeted surface modification for improving separation selectivity of polyamide nanofiltration membrane

  重点进展二:针对商品化耐酸膜通量低的问题,基于分子设计,筛选出3-氨基苯磺酰胺新型高活性耐酸单体,通过多次界面聚合工艺构建光滑亲水表面,制备了高通量(提高10倍)和抗污染的耐酸纳滤膜;采用两步逆向界面聚合工艺,制备了含聚脲/聚磺酰胺耐酸单元、具有梯度孔和双电层结构的纳滤膜保持同等重金属截留率下通量相较进口膜提升100%Chem. Eng. J. 2021, 425, 131791ZL202011482126.9   

  Aiming at low permeability of the commercially-available acid resistant nanofiltration (NF) membrane, based on molecular design, we have screened a novel acid resistant aqueous monomer with high reactivity, 3-aminobenzenesulfonamide, and prepared a NF membrane with highly hydrophilic surface, high permeability (increasing 10 times) and strong antifouling performance via surface activation assisted multi-step interfacial polymerization method; we also have prepared another acid resistant NF membrane with polyurea and poly(amide-sulfonamide) units, gradient pore structure (from small to large) and dually charged layer, via a two-layer reverse interfacial polymerization process, which has 100% higher permeability when keeping the same heavy metal ions rejections compared to the commercial acid resistant NF membrane.  

   

   

  图2双电层耐酸纳滤膜的结构和分离机理示意图

  Figure 2 Structure and separation mechanisms of dually charged acid resistant membrane

  重点进展三:从提高光效和降低成本两方面出发,突破了结构优化、低成本材料改性、结构增强、批量制造等一系列关键技术,开发了高光效、低成本的微藻培养用软体板式光生物反应器,实现了批量制造,完成了1000m2系统中试,成本可降低80%以上。

   

  图3 软体板式光生物反应器

  Figure 3 Thin-film flat plate photobioreactor

  A new thin-film flat plate photobioreactor (FPPBR) with high light efficiency and low cost was designed and produced through developing structure design, materials modification, strengthen and batch manufacturing technologies. A 1000 m2 thin-film FPPBR system was constructed and used for microalgae cultivation, the cost of microalgae cultivation decreased by 80% comparing to that of classical technique.